

Factsheet: Wire Size and Ampacity

In terms of conducting electrical current, size matters: the size of the electrical conductor. Take a look at the following table regarding *ampacity*, the current carrying capacity of a conductor in amps. You'll notice two things: the **amount of current** a wire can safely carry **increases** as the **diameter** (and area) of the wire **increases** and as the number of the **wire size decreases**. Welcome to the American Wire Gauge (AWG).

Copper Wire size (AWG)	Diameter (mils)	Area (Circular mils)	Ampacity in free air	Ampacity as part of 3-conductor cable
14 AWG	64.1	4109	20 Amps	15 Amps
12 AWG	80.8	6529	25 Amps	20 Amps
10 AWG	101.9	10,384	40 Amps	30 Amps
8 AWG	128.5	16,512	70 Amps	50 Amps

AWG Copper Wire Table

But I don't want to be an engineer...

Hey, neither do I, but this stuff is important. Notice that a #8 wire is *twice the diameter*, but *four times the area* of a #14 wire. There are a couple of practical applications here.

For one thing, the gauge of the wire determines the rating of a fuse or circuit breaker in amps. A circuit wired with #14 copper will get a 15 amp circuit breaker. A circuit with #12 copper can get a 20 amp breaker; #10 copper can be 30 amps, and so on.

The second thing to consider is that it's possible to create a fire hazard by *overloading an extension cord.* This occurs when too much current is flowing in a conductor that's not heavy enough for the electrical load in amps.

The circuit can be properly wired and its circuit breaker correctly rated, but if too much current flows through an extension cord whose wires are too small, the cord will heat up. Sometimes there is also a *voltage drop* over a longer extension cord, which could damage your tools.